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Using the WCM for transient modeling
of water distribution networks

Recent water quality studies have emphasized the need for transient analysis of large

pipe networks to properly assess the potential level of intrusion associated with negative

pressure and the resulting effect on disinfectant residual efficiency. Transient analysis

is computationally demanding even for simple pipe systems, and the computational

effort for large pipe networks can be substantially high. Moreover, computational effort

and accuracy of solution are interdependent. Therefore, understanding the computational

efficiency and the accuracy of solution associated with the available transient analysis

methods is essential for efficient handling of transients in large pipe distribution networks.

This research investigated the numerical accuracy of solution and the computational

efficiency of two popular methods for transient analysis—the wave characteristic

method (WCM) and the method of characteristics—and elucidated their implications for

practical applications. The authors offer a guideline for selecting the number of friction

orifices for the WCM. In addition, this research demonstrated the superior performance

of the WCM in both numerical accuracy of solution and computational effort for transient

analysis of large water distribution networks.
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ransient modeling of liquid flow in large pipe networks has always
been a difficult and tedious task. Many methods have been developed
for transient analysis, and only a few have been successful in terms
of acceptable level of accuracy of solution, programming ease, and
computational efficiency. The wave characteristic method (WCM)

is one such method that has been used with great success over the past quar-
ter century by numerous modelers worldwide (Jung et al, 2007; Boulos et al,
2006, 2005; Wood et al, 2005a, 2005b, 1966). The fixed-grid method of
characteristics (MOC) is another popular method that has been widely used
(Wylie & Streeter, 1993, 1978; Streeter & Wylie, 1967). Although these two
methods solve the same governing equations, make similar assumptions, and
adopt a numerical procedure for time simulation, they differ significantly in
their underlying approaches and computational requirements.

BACKGROUND
Historically, many of the transient modeling efforts were directed toward

transmission mains and penstocks with little or no attention to complex
water distribution networks. Recent studies by the National Research Coun-
cil, the Water Research Foundation, and the US Environmental Protection
Agency highlighted the potential for pathogen intrusion in drinking water dis-
tribution networks during transient-generated low-pressure events (Besner,

T
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2007; Fleming et al, 2006; NRC, 2006; Friedman et al,
2004; LeChevallier et al, 2003, 2002; Kirmeyer et al,
2001). Findings of this nature have spurred the growth in
transient modeling activities directed toward complex
drinking water distribution networks.

Modeling methods compared and contrasted. The com-
putational requirements of transient modeling are not
trivial, even for small transmission mains. The computa-
tional requirements for transient modeling of large com-
plex water distribution networks could be several orders
of magnitude higher, ranging from several minutes to a
few hours on modern personal computers. Despite the
long computational time required to calculate transients
in pipe networks, the final solution obtained still may
not be accurate. This is attributable to topological and
numerical simplifications (e.g., neglecting pipe branches,
lumping consumption at main nodes, estimating the
unknown pipe friction and effective diameter) that could
dampen or completely distort the transient event.

In this context, therefore, the authors considered it pru-
dent to compare and contrast the two popular transient
modeling approaches—WCM and MOC—paying close
attention to the computational efficiency and the numeri-
cal accuracy of solutions. Although marginal differences in
computational effort may not influence the decision-mak-
ing process, computational efforts that differ several orders
of magnitude from one method to another to achieve sim-
ilar accuracy would certainly influence the decision-mak-
ing process. Computational time is also an important issue
when a transient simulation model is used in an opti-
mization framework. Popular optimization models (Jung
& Karney, 2006; Kapelan et al, 2003; Lingireddy et al,
2000; Vitkowsky et al, 2000; Wang et al, 1997) run tran-
sient simulation models several hundred, if not thousands,
of times to obtain the optimal solution.

A closer look at the two approaches found that the
primary difference between the WCM and the MOC is the
way the pressure wave is tracked between two bound-
aries of a pipe segment. The boundaries for pipe segment
might include reservoirs, tanks, dead-end nodes, partially
opened valves, pumps, junction nodes, surge-control
devices, and vapor cavities. The MOC tracks a distur-
bance in the time–space grid using a numerical method
based on characteristics (Wylie & Streeter, 1993; Streeter
& Wylie, 1967) whereas the WCM tracks the distur-
bance on the basis of wave-propagation mechanics (Bou-
los et al, 2006; Wood et al, 2005, 1966). Although the two
methods have several characteristics in common, they
differ in certain respects that can influence the accuracy
and computational effort of each method and therefore
warrant an in-depth study. With regard to the accuracy of
solution and the computational effort of modeling
hydraulic transients in large pipe networks, two main
issues are the selection of computational time step, �t, and
the adequacy of friction modeling (based on the steady-
state friction factor).

Although no detailed analytical study has been reported
for evaluating the numerical performance and computa-
tional efficiency of transient analysis methods for large
pipe networks, some guidelines in terms of error analysis
are available for first-order MOC for single pipeline sys-
tems. The MOC is classified by the order of integration used
for the frictional term in its implementation. In the litera-
ture, the MOC generally means a first-order accurate inte-
gration scheme for the frictional term, and a second-order
MOC implementation is also available. Other researchers
have observed that in the MOC, a firm criterion for select-
ing the number of segments based on friction is not possi-
ble because any error produced is heavily dependent on
the amplitude and frequency of the disturbance (Wylie &
Streeter, 1993). The same argument applies to the WCM
and any transient analysis method.

Wylie (1996) studied the accuracy and validity of the
first-order MOC scheme by nondimensionalizing the
basic equations of motion and continuity governing one-
dimensional transient flow in prismatic pipe and exciter
behavior. Exciter behavior describes the magnitude and
effective duration of transient-initiating events, e.g., dura-
tion of a valve closure, valve opening, and pump shut-
down; the rate of change of velocity of flow or pressure
head at a point captures the exciter behavior (Wylie,
1996). Basic equations were first nondimensionalized to
better characterize the pipeline using parameters most
widely accepted in the literature; this representation was
then combined with nondimensionalized system time
constants to characterize a transient response (Wylie,
1996). Wylie presented an error study in terms of steady-
state frictional losses, number of segments the pipeline is
divided into for the analysis, and exciter behavior. He
observed that the dimensionless numbers and time con-
stants used in the study helped to generalize the charac-
terization of different systems and can be used to evalu-
ate the accuracy and range of validity of a solution
procedure (Wylie, 1996).

Scope of current study. The current work uses the same
parameters used by Wylie to evaluate the influence of
steady-state frictional losses, the number of segments a
pipeline is divided into for analysis, the exciter behavior,
and the system time constants in modeling accuracy and
then extends the study by applying these parameters to
compare computational efficiency and accuracy of solu-
tion obtained by both first- and second-order MOC and
the WCM for single pipelines. Guidelines for selecting
the number of segments for the WCM were developed.
The authors also provide a discussion and demonstra-
tion of the implications of these findings on transient
modeling of large pipe networks.

Because both the MOC and WCM implement
hydraulic components (e.g., pumps, valves, surge tanks,
and air vessels) using the same mathematical equations
describing the component, the authors assumed that the
individual implementations of the hydraulic components
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in the two methods would result in comparable accuracy
and computational effort. Therefore, the current work
excluded modeling of hydraulic components from the
discussion on computational efficiency. Similarly, com-
putational issues involving cavitation, unsteady friction
(Silva-Araya & Chaudhry, 2001; Pezzinga, 2000), non-
linear pipe behavior, dissolved air in fluid, and fluid struc-
ture interaction were not considered.

OVERVIEW OF THE MOC AND WCM
The following two equations govern the flow of fluid

in prismatic closed conduits under transient conditions
(Boulos et al, 2006; Wood et al, 2005a, 2005b; Wylie &
Streeter, 1993; Almeida & Koelle, 1992). Eqs 1 and 2
show the continuity equation and momentum equation,
respectively,
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in which Q is the flow rate, H is the pressure head, f(Q)
is the friction slope expressed as a function of flow rate,
A is the pipe flow area, a is the pipe celerity or wave
speed, g is the gravitational acceleration, and x and t are
the space–time coordinates. Advective terms are neglected
in Eqs 1 and 2, which is justified in most cases.

Solution of Eqs 1 and 2 with appropriate boundary
conditions yields head and flow values in both spatial
and temporal coordinates for any transient analysis prob-
lem. The equations are first-order hyperbolic partial dif-
ferential equations in two independent variables (space
and time) and two dependent variables (head and flow).
Because both methods have been discussed adequately
in the literature (Boulos et al, 2006; Wood et al, 2005;
Wylie & Streeter, 1993, 1978; Streeter & Wylie, 1967),
only a brief account of each method is given in subse-
quent sections.

MOC. In the MOC, the governing partial differential
equations are converted to ordinary differential equa-
tions and then to a finite difference form for solution by
a numerical method. The solution space comprises two
equations (termed characteristic equations) along with
two compatibility equations for any point in a space–time
grid. The compatibility equations are valid only when
the characteristic equations are satisfied.

Figure 1 shows a typical space–time grid with charac-
teristic equations. The MOC divides the entire pipeline
into a predetermined number of segments, writes the
characteristic and compatibility equations for every grid
location, and then solves these equations for head and
flow at all grid locations. The line friction of the entire
pipeline is distributed in each of these segments. Various
boundary conditions such as reservoirs, valves, pumps
and other devices are handled by combining the appro-

priate characteristic equation with the equations defining
the boundary. The first-order MOC uses only the known
flow rates from the previous time step to compute the
flow rate and head for the next time step. A second-order
MOC scheme uses a nonlinear equation in the next time-
step flow rate. The next time-step flow rate obtained by
solving this nonlinear equation is then used to compute
the next time-step head. Second-order MOC is more accu-
rate than first-order MOC.

WCM. The WCM is based on the concept that tran-
sient pipe flow results from generation and propaga-
tion of pressure waves that occur as a result of a dis-
turbance in the pipe system. A pressure wave, which
represents a rapid pressure and associated flow change,
travels at the sonic velocity of the liquid medium and is
transmitted and reflected at all discontinuities in the
pipe system. A pressure wave is also modified by pipe
friction. The WCM essentially consists of two types of
analyses: component analysis and junction analysis.
Component analysis deals with the problem of trans-
mission and reflection of pressure waves at a hydraulic
device whereas junction analysis addresses the same
problem at a pipe junction, a dead-end node, or a con-
stant head reservoir. The entire line friction is modeled
as an equivalent orifice situated at the midpoint of a
pipeline or multiple orifices distributed uniformly
throughout the pipeline.

Figure 2 provides a schematic representation of wave
action at a friction orifice. D1 and D2 represent the mag-
nitudes of pressure waves approaching the friction orifice,
and D3 and D4 represent the magnitudes of pressure
waves reflected off the friction orifice. H1 and H2 repre-
sent the pressure head at the corresponding locations
before the pressure waves impinge on the friction orifice,
and H3 and H4 represent the pressure head at the corre-
sponding locations after the pressure waves impinge on the
friction orifice. Similarly Qi and Qo represent flow
through the friction orifice before and after, respectively,
the pressure waves impinge on the friction orifice. Trans-
mission and reflection at the friction orifice represent the
effect of line friction on the pressure waves.

DIMENSIONLESS NUMBERS AND SYSTEM TIME
CONSTANTS

Wylie (1996) nondimensionalized the basic equations
using steady-state flow and friction parameters, potential
surge, and wave reflection time of the pipeline. The para-
meters used are defined in the subsequent sections.

Steady-state frictional loss is defined in Eq 3

Hfo � �
f

D

L
� �

(V

2
0

g

)2
� (3)

in which f is the Darcy–Weisbach friction factor, L is the
length of the pipe, V0 is the steady-state line velocity, D
is the diameter of the pipeline, and g is the gravitational
acceleration.
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The following sections detail the algorithms used by the
wave characteristic method (WCM), first-order method of
characteristics (MOC), and second-order MOC as well as the
floating point operations (flops) involved in the solution pro-
cedures. The number shown in the square brackets for each
statement is the number of flops involved in the statement.
Only addition, subtraction, multiplication, division, and modu-
lus operations were considered, and each operation was
counted as one. Assignment operations were not counted.

COMPUTATIONAL EFFORTS ASSOCIATED
WITH THE THREE METHODS

WCM computational effort of friction orifice analysis. The
term “res” represents the resistance of the friction orifice.

F = a/(g × A) [2]

Qo = Qi + (D1 – D2)/F [3]

in which a is the pipe celerity or speed, g is the gravitational
acceleration, A is the pipe flow area, Qi and Qo represent
flow through the friction orifice before and after, respective-
ly, the pressure waves impinge on the friction orifice, and D1
and D2 represent the magnitudes of pressure waves
approaching the friction orifice.

Solve

{ Qf = Qo

df = – res × (Qf × |Qf | – Qi × |Qi |)/2 [7]

Qo = Qi + (D1 – df – D2)/F
} until (Qf – Qo) is negligible [4]

M = F × (Qo – Qf ) [2]

H3 = H1 + 2 × D1 – M [3]

H4 = H2 + 2 × D2 + M [3]

in which H1 and H2 represent the pressure head at the cor-
responding locations before the pressure waves impinge on
the friction orifice, and H3 and H4 represent the pressure
head at the corresponding locations after the pressure
waves impinge on the friction orifice.

First-order MOC computational effort for solution of
equations at a grid location. The term “res” represents the
resistance of a single segment.

F = a/(g × A) [2]

G = res × g × A × �t [3]

Qi,t = 0.5 × [(Qi – 1,t – 1 + Qi + 1,t – 1) + 1/F × (Hi – 1,t – 1 – Hi + 1,t – 1)
+ Qi – 1,t – 1 × |Qi – 1,t – 1| + Qi  + 1,t – 1 × |Qi  + 1,t – 1|) × G] [13]

Hi,t = 0.5 × 1/F × [(Qi – 1,t – 1 – Qi  + 1,t – 1) + 1/F × (Hi – 1,t – 1 + Hi  + 1,t – 1)
+ (Qi – 1,t – 1 × |Qi – 1,t – 1| – Qi  + 1,t – 1 × |Qi  + 1,t – 1|) × G] [15]

Second-order MOC computational effort for solution of
equations at a grid location.

F = a/(g × A) [2]

G = res × g × A × �t [3]

Q2 = Qi,t – 1

delQ = 0

E = 0.5 × [(Qi – 1,t – 1 + Qi  + 1,t – 1) + F × (Hi – 1,t – 1 – Hi  + 1,t – 1)] [5]

Solve

{Cp = G/8 × [|Qi – 1,t – 1 + Q2| × (Qi – 1,t – 1 + Q2)
+ |Qi  + 1,t – 1 + Q2| × (Qi  + 1,t – 1 + Q2)] [11]

Cp_der = G/4 × (|Qi – 1,t – 1 + Q2| + |Qi  + 1,t – 1 + Q2|) [7]

delQ = –(Cp – Q2 + E)/(Cp_der – 1) [4]

Q2 = Q2 + delQ
} until delQ is negligible [1]

in which E is the percentage error

Qi,t = Q2

Hi,t = 0.5/F × [(Qi – 1,t – 1 – Qi  + 1,t – 1) + 1/F × (Hi – 1,t – 1 + Hi  + 1,t – 1)
+ G/4 × (Qi – 1,t – 1 + Qi,t) × |(Qi – 1,t – 1 + Qi,t)| – (Qi  + 1,t – 1 + Qi,t) [19]
× |(Qi+1,t – 1 + Qi,t)|]

Algorithms used by each method and floating point
operations involved in the solution procedure

2009 © American Water Works Association



RAMALINGAM ET AL  |   101:2 • JOURNAL AWWA  |   PEER-REVIEWED  |   FEBRUARY 2009  79

Potential surge is represented by Eq 4
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in which a is the pipe celerity or wave speed.
The nondimensional factor is shown in Eq 5:
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A value of R � 1 represents a case of attenuation
and line packing in which the potential surge is less
than the frictional head loss in the pipeline, and a
value of R < 1 represents absence of attenuation and
line packing. Use of Hs and R as defined here permits
the characterization of pipelines into one of the com-
paring values of R (Liou, 1992; 1991). According to
Wylie, this means that “pipelines with the same R
value will offer the same response if equal, scaled, ini-
tial and boundary conditions are applied. This obser-
vation removes the specific values of diameter, length,
wave speed, etcetera, in discussions comparing one
system with another” (Wylie, 1996).

The evaluative index for friction in the MOC (Wylie &
Streeter, 1993) is
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which is represented in terms of R as
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in which N is the number of segments in a pipeline and
�x = L/N is the size of a single segment.

Wylie (1996) defined two dimensionless time con-
stants—one based on the time, Tm, at which transient
results are compared and another based on the time, Te,
over which a transient-initiating event or disturbance
(such as a valve closure, valve opening, or pump ramp-
down) takes place. Tm and Te are then nondimensional-
ized using wave travel time, L/a, to arrive at dimension-
less time constants tm and te. For example, for a pipeline
with length L and wave speed a, the time for a transient
pressure wave from the downstream end to travel to the
upstream end is L/a. If the transient results are compared
at time Tm = 1.5 × L/a after the initiation of transient
pressure wave, then time constant tm is [1.5 × (L/a)/(L/a)]
= 1.5. Similarly if the pressure transient was initiated by
completely closing a valve in time Te = 0.2 × (L/a), then
te is [0.2 × (L/a)/(L/a)] = 0.2.

Error is calculated in Eq 8 as

E � �
�

H

H
� � Ce (8)

in which �H is the deviation in the computational results
from the correct answer H obtained at a large value of N,

dv/dt is the time rate of change of velocity and captures
the exciter behavior, z is an exponent, and Ce corresponds
to the percentage error E when R (dv/dt)/Nz = 1.

The exponent z is a function of R, dv/dt, time tm at
which comparison is made, and te, the dimensionless
effective operator time. The exponent z is likely to vary
differently when tm and te are < 2 (Tm and Te < 2 L/a are
generally categorized as rapid transients) than when the
same dimensionless time constants are > 2 (Tm and Te >
2 L/a are generally categorized as slow transients).

Objectives of the current study. Eq 8 is a useful tool to
study the combined effect of steady-state friction cap-
tured by R, exciter behavior represented by dv/dt, and
the number of segments a pipeline is divided into for
analysis, N, on the accuracy of a solution procedure. The
error involved in a solution procedure can be compared
by determining Ce and exponent z for that solution pro-

R�
d

d

v

t
�

�
Nz

t 

t 

i – 1

t + Δt

t – Δt
i i + 1 i + 2

x 

Characteristic line 

dx/dt = – a dx/dt = + a

FIGURE 1  Space–time grid depicting characteristic lines 

a—celerity or wave speed, t—time, x—space
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FIGURE 2  Wave action at a friction orifice

D1 and D2—magnitudes of pressure waves approaching the friction 
orifice, D3 and D4—magnitudes of pressure waves reflected off the 
friction orifice, H1 and H2—pressure head at the corresponding 
locations before the pressure waves impinge on the friction orifice, 
H3 and H4—pressure head at the corresponding locations after the 
pressure waves impinge on the friction orifice, Qi and Qo—flow 
through the friction orifice before and after, respectively, the 
pressure waves impinge on the friction orifice

2009 © American Water Works Association



80 FEBRUARY 2009  |   JOURNAL AWWA •  101:2   |   PEER-REVIEWED  |   RAMALINGAM ET AL

cedure. However, to facilitate comparison of the three
solution procedures for this study, at least one of them
must be fixed. Wylie (1996) reported that exponent z for
first-order MOC is ~ 2 for tm = 2 and te < 2. Therefore,
if a value of 2 for z for the three methods is used, Ce for
all three methods can be determined and compared. Con-
versely, Ce and z for first-order MOC can be determined,
and this value of Ce can be used for second-order MOC
and WCM, and the exponent value z can be solved and
compared. In the current study, Ce and exponent z were
determined for all three methods, and then the two ap-
proaches described previously were used to analyze the
results for comparison.

The current study included the following objectives:
• Use these dimensionless parameters for first- and

second-order MOC and WCM for evaluating the influ-
ence of friction modeling and system time constants on
the modeling accuracy at a time, tm, when the effect of
line friction reflects completely on the computed results.
Use a classic reservoir–pipeline–valve system with instan-
taneous valve closure as the transient-initiating event
with te < 2. The time at which the effect of line friction
influences the computed results most is clearly when tm
is < 2 (Tm < 2 L/a) but close to 2. Thus, for each method,
compute the head at the valve just before the end of one
cycle (i.e., before the reflected wave from the reservoir
impinges on the valve) for a different number of pipe
segments, N.

• Conduct the previous error study for a long pipeline
and short pipeline in which there is no attenuation and line
packing (as is the case in large pipe networks), i.e., when
R is < 1.

• Conduct the error study for a few cases to obtain an
understanding of the difference in numerical performance
of the three schemes when attenuation and line-pack
effects are present, i.e., when R is > 1.

• Study the computational efficiency of each scheme
for a specified level of accuracy.

• Discuss the implication of findings on the decision-
making process for transient analysis of large pipe networks.

NUMERICAL EXPERIMENT
The effect of line friction and exciter behavior on

modeling accuracy is studied by the classic reservoir–
pipeline–valve problem. Figure 3 depicts the hydraulic
system considered for this study. The pipeline con-
nects a constant-head reservoir on the upstream end
and a valve on the downstream end. The study con-
sidered two scenarios—one with a long pipeline (L =
6,583.7 m) and the other with a relatively short
pipeline (L = 1,097.3 m), each with eight cases for
various R values up to R = 1 (R � 1). The study also
considered a third scenario with a long pipeline (L =
6,583.7 m) with six cases for R values ranging from 1
to 2 (1 � R � 2). The valve resistance, VR, is defined
as VR = �H/Q2, in which �H is the head drop across

the valve in m, Q is the flow rate in m3/s, and VR =
19,006.2 s2/m5. Table 1 summarizes the hydraulic
parameters of scenarios 1–3 and the steady-state results
for all cases in each scenario.

The method of specified time intervals approach was
used for the MOC (Wylie & Streeter, 1993). The Courant
number, defined as Cr = [a × (�t/�x)], was kept at 1 in all
cases by keeping the relation �t/�x to wave speed a, thus
avoiding interpolation errors. Because the transient-initi-
ating event was an instantaneous valve closure, adjusting
�t to vary the number of segments while maintaining a
Courant number of 1 was easily achieved. Instantaneous
closure of the valve was the transient-initiating event (valve
closes fully in 1 �t) modeled in this example application.
The percentage error of head at the valve just before the end
of one cycle was calculated using the accurate solution
obtained from using a large number of segments (1,200
when L = 6,583.7 m and 1,000 when L = 1,097.3 m). The
number of segments in the long pipeline scenarios (L =
6,583.7 m) are 2, 3, 4, 6, 8, 12, 24, 60, 600, 1,200, and the
associated �t values (also the effective valve closure times)
in seconds are 3.000, 2.000, 1.500, 1.000, 0.750, 0.500,
0.250, 0.100, 0.010, 0.005. The number of segments in the
short pipeline scenario (L = 1,097.3 m) are 2, 4, 5, 10,
20, 100, 200, 1,000, and the associated �t values (also
the effective valve closure times) in seconds are 0.500,
0.250, 0.200, 0.100, 0.050, 0.010, 0.005, 0.001. Therefore
scenario 1 has 80 configurations (8 × 10), scenario 2 has
64 (8 × 8) configurations, and scenario 3 has 60 (6 × 10)
configurations. The dimensionless parameters R, dv/dt,
Ce, and N are calculated for all configurations.

Effect of steady-state line friction on modeling accura-
cies. As discussed previously, in the MOC, both steady
and unsteady friction approximations depend on the
number of segments a pipeline is divided into. Frictional
effects are computed by solving the compatibility equa-
tions at the intermediate points. For high line friction
cases, Wylie and Streeter (1978) suggested the use of sec-
ond-order MOC, i.e., use of a second-order accurate pro-
cedure for the friction term, resulting in compatibility
equations that are nonlinear in flow rate.

The WCM handles line friction by introducing an ori-
fice with an equivalent resistance within the pipeline. The
orifice resistance is calculated using the total steady-state
frictional head loss and the steady-state flow rate through
the pipeline. Line friction is evenly distributed when mul-
tiple orifices are used. One set of computation is per-
formed at every junction of adjoining segments in the
MOC whereas in the WCM each segment has a friction
orifice and therefore one set of computation is performed
for every segment.

Figures 4, 5, and 6 show the percentage error in head
at the valve for each method for varying numbers of seg-
ments and for each scenario for three values of R. The y-
axis for Figures 4, 5, and 6 are logarithmic, and percent
values < 0.001 were ignored for clarity. Figure 7 shows the
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percentage error of head versus the evaluative index for
frictional accuracy � defined by Eq 7.

Effect of exciter behavior on modeling accuracies. Analy-
sis of results for exciter behavior on numerical accuracy
was performed using a spreadsheet program. Because Eq
8 has two unknown variables, i.e., Ce and exponent z,
three types of analysis were carried out. In the first case,
both variables were solved for all methods. In the sec-
ond case, Ce for second-order MOC and WCM were
kept the same as that obtained for first-order MOC and
the exponent was solved. In the third case, the exponent
was kept at 2 for all cases, and Ce was solved for. Table
2 summarizes the results.

COMPUTATIONAL EFFICIENCY
Computational effort in both the MOC and WCM is

associated with the calculation of heads and flows along
the pipeline and at the boundaries. Elements or devices
forming a boundary involve either simple equations or

nonlinear quadratic equations. Because the techniques
used by both methods to solve these nonlinear equations
are similar, the computational effort needed at the bound-
aries in both methods is comparable. Therefore, it is suf-
ficient to look into the computational effort needed in
modeling the pipes by these methods. The sidebar on
page 78 shows the algorithm used by each method and the
floating point operations (flops) involved in the solution
procedure.

WCM computational efficiency. Component analysis is
a generic procedure used by the WCM to analyze the
wave action at various discontinuities in the system (Bou-
los et al, 2006; Wood et al, 2005). It involves nonlinear
equations solved iteratively by the Newton–Raphson
method. Traditionally, the WCM made use of compo-
nent analysis for friction orifice analysis as well.

The friction orifice problem is simple enough, how-
ever, that it can be handled more intuitively using the
basic wave reflection mechanism. Equations involved

Hazen–Williams
Roughness Diameter Hreservoir a V0 Hfo Hs

Case Coefficient mm m m/s m/s m m R = Hfo/Hs

Scenario 1: Pipeline length =
6,583.7 m, R � 1.0

1 120 128.3 182.9 1,097.28 1.643 174.3 183.6 0.95

2 120 128.3 121.9 1,097.28 1.320 116.4 147.6 0.79

3 120 128.3 91.4 1,097.28 1.131 87.4 126.4 0.69

4 120 128.3 61.0 1,097.28 0.908 58.3 101.6 0.57

5 120 205.0 121.9 1,097.28 1.439 79.0 160.9 0.49

6 120 257.6 121.9 1,097.28 1.222 44.8 136.7 0.33

7 120 307.1 121.9 1,097.28 0.969 23.8 108.5 0.22

8 120 419.9 121.9 1,097.28 0.564 6.0 63.1 0.10

Scenario 2: Pipeline length =
1,097.3 m, R � 1.0

1 75 78.0 259.1 1,097.28 2.432 271.8 256.5 1.06

2 90 78.0 228.6 1,097.28 2.722 225.4 304.2 0.74

3 100 78.0 213.4 1,097.28 2.908 209.7 325.1 0.65

4 120 78.0 121.9 1,097.28 2.569 119.1 287.4 0.41

5 120 205.0 121.9 1,097.28 2.137 27.4 238.9 0.11

6 120 257.6 121.9 1,097.28 1.469 10.5 164.3 0.06

7 120 307.1 121.9 1,097.28 1.061 4.7 113.9 0.04

8 120 419.9 121.9 1,097.28 0.576 1.0 64.4 0.02

Scenario 3: Pipeline length =
6,583.7 m, R � 1.0
and R � 2.0

1 100 78.0 304.8 1,097.28 1.350 304.0 151.0 2.01

2 100 78.0 243.8 1,097.28 1.198 243.2 133.8 1.82

3 105 78.0 182.9 1,097.28 1.076 182.4 120.3 1.52

4 120 78.0 152.4 1,097.28 1.113 151.9 124.5 1.22

5 120 78.0 121.9 1,097.28 0.988 121.5 110.4 1.10

6 120 78.0 100.6 1,097.28 0.890 100.2 99.5 1.01

a—pipe celerity or wave speed, Hfo—frictional head loss, Hreservoir—head at reservoir, Hs—potential surge, R—nondimensional factor, V0—steady-state line velocity

TABLE 1 Hydraulic parameters and steady-state results
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in the friction orifice analysis were cast
differently and solved by a simple iter-
ative technique. It was found that the
new approach was computationally
less expensive than the former ap-
proach. Both methods solved the same
equations, but equations were set up
differently and adopted two different
iterative techniques.

The new procedure for handling the
friction is shown in the first section of
the sidebar. This method needed more
iterations in the early phase of tran-
sient analysis but less iterations later
on; on average, the method required
two iterations. The computational
effort involved was 5 + (2 × 11) + 8, or
35 flops.

First-order MOC computational effi-
ciency. Because the entire pipeline is
divided into a number of segments for
calculation of heads and flows and sim-
ilar equations are solved for each grid
point, computational effort can be
ascertained by determining the total
number of computations associated
with a grid location. The second sec-
tion of the sidebar shows the flop cal-
culations for first-order MOC, which
needed 33 operations per segment per
time increment.

Second-order MOC computational effi-
ciency. Although mixed schemes used in
other work (Streeter & Wylie, 1993;
Almeida & Koelle, 1992) are more
accurate than first-order MOC and less
computationally expensive than second-
order MOC, the current study used the
second-order scheme reported by Wylie
and Streeter (1978) for its accuracy. Sec-
ond-order MOC differs from first-order
MOC only in that it has a nonlinear
equation in flow rate. The Newton–
Raphson method was used to solve the
nonlinear equation, and it was found
that the second-order MOC scheme
needed (on average) two iterations for
convergence. As shown in the third sec-
tion of the sidebar, the number of com-
putations for a single segment was 10 +
(2 × 23) + 19, or 75 flops.

Chaudhry (1979) proposed a predic-
tor–corrector scheme, which purport-
edly is more computationally efficient
than second-order MOC. Results from
this scheme were either similar or slightly

Reservoir Valve 

FIGURE 3  Schematic of the hydraulic system considered 
 for the cast study
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inferior to second-order MOC and
required 62 flops per segment per
time increment.

INFERENCES AND DISCUSSION
The results shown in Figures 4, 5,

and 6 support the following premises.
• All methods were accurate at a

higher number of segments, regard-
less of the value of R.

• Results from the methods dif-
fered significantly when the num-
ber of segments was low.

• The WCM produced consis-
tently more accurate results than
both first- and second-order MOC
schemes for lower segment cases.

• Results from the WCM were
much closer to the accurate solution
even with just two segments. The
maximum percentage error for the
WCM in cases with two segments
was 4.5% for R < 1 and 16% for R
> 1. The maximum percentage error
for first- and second-order MOC
schemes was 46.8% and 23.4%,
respectively, for R < 1 and 89.5% and 69.2%, respec-
tively, for R > 1.

Figures 4, 5, and 6 show the performance for indi-
vidual cases whereas Figure 7 shows the percentage error
against the frictional evaluative index R/N for all con-
figurations. The percentage error for the maximum value
of R/N = 0.53 for R < 1 was < 5% for the WCM but
46.8% and 23.3% for the first- and second-order MOC
schemes, respectively. For R/N = 1.01 for R > 1, the cor-
responding percentage error results for the WCM, first-
order MOC, and second-order MOC were 16.3%,
89.5%, and 69.2%, respectively. The WCM was more
resilient against the value of frictional index than were the
MOC schemes.

As a general guidance for accurate solution, the eval-
uative index should be well below 0.15 for accuracy of
solution by first-order MOC (Streeter & Wiley, 1978).
Wylie (1996) reported that the first-order MOC scheme
was accurate (1% error) for values < 0.01.

Table 2 shows the underlying relationship between
percentage error and the dimensionless parameters.

• Analysis types 1 and 3 indicated that for R < 1 and the
same number of segments, the WCM produced results 14
times more accurate than the first-order MOC scheme and
7 times more accurate than the second-order MOC scheme.

• Analysis type 2 indicated that for R < 1 and the
same level of accuracy, if N is the number of segments for
first-order MOC, then the WCM required only N(2/5.5) (or
N(0.364)) segments, and if N is the number of segments for
second-order MOC, then the WCM required only

N(2.9/5.5) (or N(0.527)) segments. For example, in a hypo-
thetical case in which first-order MOC required 100 seg-
ments for a specified accuracy, the WCM would require
only 100(0.364) = 5.3, or 6 segments.

• Analysis type 3 indicated that for R > 1 and the same
number of segments, the WCM produced results 6 times
more accurate than the first-order MOC scheme and 3
times more accurate than the second-order MOC scheme.

Table 3 summarizes the number of segments required for
each method and associated computational effort required
for < 2% error in the computed head. For the MOC
schemes, only N–1 computations were needed for N seg-
ments. For the WCM, N frictional orifice computations
needed to be made. The conclusions established previously
can be numerically verified using values in the table.

Although computations can be performed with a sin-
gle orifice (single segment case) for a system in the WCM,
the single segment case was ignored in order to facilitate
comparison across the three methods. For cases in which
two orifices were suggested by the study to achieve a per-
centage error of < 2% in the computed head, one orifice
would have been sufficient. As an example, Figure 8
shows the head at the valve for case 5 of scenario 3 for a
two-segment case using first-order MOC, second-order
MOC, and the WCM and compares these results with
the accurate solution obtained with 1,200 segments for a
total simulation period of 500 s. As shown in the figure,
the WCM performed better than the two MOC schemes.

A similar argument can be made regarding the selec-
tion of number of segments for the systems studied. Had
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the variation of number of segments been smoother and
evenly spaced in each system, the variation in number of
segments for a particular accuracy across different systems
would have been less, especially in the second-order MOC
scheme and the WCM.

Table 3 yields the following findings:
• For a value of R up to 0.5, it is sufficient to use only

two friction orifices in the WCM to ensure a percentage
error of < 2%. The WCM in this case would be at least
20 times more computationally efficient than the first-
and second-order MOC schemes.

• For R > 0.5 and R < 1, it is sufficient to use six fric-
tion orifices in the WCM to ensure a percentage error of

< 2%. In this case, use of the
WCM would be at least 10 times
more computationally efficient
than the first- and second-order
MOC schemes.

TRANSIENT ANALYSIS OF
LARGE PIPE NETWORKS

Analysis of large pipe net-
works is computationally inten-
sive, and the computational effort
is directly proportional to the
time step, �t, selected for the
analysis. As is true for any
numerical scheme, a smaller �t
results in better accuracy of solu-
tion. In addition, the time step
determines the number of seg-
ments, N, that a pipeline segment
is divided into and therefore the
accuracy of the method.

Selection of the time increment.
In general, selection of the com-
putational time step �t for the
transient simulation of a com-
plex pipe network has the fol-
lowing constraints:

• �t should be less than or
equal to the shortest wave travel
time (length/celerity) in the net-
work (in the pipes modeled);

• �t should be less than or
equal to the minimum time span
of exciter behavior or boundary
condition changes; and

• �t should be the greatest
common divisor (GCD) of travel
times of all pipelines and the min-
imum time span of boundary con-
dition change.

Accuracy and Courant stability
criteria. As described previously,
the MOC requires that the ratio

of the distance step, �x, to the time step, �t, be equal to
the wave speed, a, in the pipe. In other words, the
Courant number, defined as [a × (�t/�x)], ideally should
be equal to 1 and must not exceed 1 for stability rea-
sons (Chaudhry, 1979). Because most pipeline systems
have a variety of different pipes of various wave speeds
and lengths, it might be difficult to satisfy the Courant
stability criterion for all pipes with a reasonable (and
common) value of �t (Karney & Ghidaoui, 1997). This
challenge can be overcome by either adjusting the lengths
and/or wave speeds of the pipes or allowing the Courant
number to be < 1. Allowing a Courant number < 1
requires a numerical interpolation that in turn leads to

Scenario 1: Pipeline length = 6584.7 m, R < = 1.0

Scenario 2: Pipeline length = 1097.3 m, R < = 1.0

Scenario 3: Pipeline length = 6584.7 m, R > = 1.0 and R < = 2.0
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FIGURE 7  Percentage error versus frictional evaluative index   
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numerical damping and phase shift of the pressure wave,
particularly for fast transients and steep wave fronts
(Chaudhry, 1987). The errors resulting from interpola-
tions can be reduced by adopting a greater number of seg-
ments, resulting in a smaller computational time step
(Karney & Ghidaoui, 1997), which in turn increases the
computational time requirements. Similar treatment of
adjusting the wave speed or pipe lengths should also be
performed in the WCM.

Advantage of the WCM. In the MOC, the time step
directly determines the number of segments, N, for each
pipeline and subsequently the accuracy of solution; for a
Courant number, Cr, of 1, �x can be calculated from the
relation, Cr = a × (�t/�x) and then N = L/�x. Thus any
change in �t results in a corresponding change in N,
which is necessitated by the underlying computation
mechanics of the MOC.

In the WCM, the time step does not directly deter-
mine the number of segments, N. Rather it requires only
that the wave travel time of each segment length be a
multiple of �t. Therefore, for the same �t, the WCM has
the advantage of choosing a different number of seg-
ments, N. This makes it possible to choose a �t required
by constraints described previously in this section and
then later choose a number of segments, N (thus, the

number of orifices), required for a certain accuracy. This
represents a significant advantage, and it stems from the
underlying wave propagation mechanics of the WCM.

This can be easily explained using an example appli-
cation. Consider a pipeline of length L with wave speed
a and transient time step �t. If the wave travel time (L/a)
of the pipeline is 12 × �t, then the MOC absolutely needs
12 pipe segments (N = 12). In the WCM, the number of
segments, N, can be 1, 2, 3, 4, or 6. For example, using
the inferences of this study, N can be selected, depending
on R, i.e., N = 2 for values of R < 0.5 and N = 6 for val-
ues of R between 0.5 and 1.0.

Example application. To illustrate the effect of friction
modeling, issues in selecting time increment for simulation,
and computational effort associated with each method
for a pipe network, the authors used a small, well-pub-
lished network model (Streeter & Wylie, 1978). Figure 9
shows the schematic for this system, and Table 4 presents
the pipe characteristics of the system. The reservoir grade
= 191 m, and all nodal elevations = 0 m. Nodal demand
at the dead end located in pipe P-7 = 30 cfs (0.85 m3/s), and
demand at all other nodes = 0. Minor loss in all pipes = 0.

The transient-initiating event is the demand change at
the dead end located in pipe P-7 over a period of 0.6 s, i.e.,
demand of 0.85 m3/s at time = 0 decreases to 0 in 0.6 s.

First-order MOC Second-order MOC WCM

Exponent Exponent Exponent
Scenario Ce z SSE Ce z SSE Ce z SSE

Both Ce and exponent z
are solved for all.

Scenario 1: Pipeline length = 124.52 1.99 520.48 62.33 2.18 60.39 9.61 2.06 3.68
6,583.7 m, R � 1.0

Scenario 2: Pipeline length = 10.76 1.99 22.47 5.47 2.17 18.45 0.79 2.03 5.49
1,097.3 m, R � 1.0

Scenario 3: Pipeline length = 135.86 1.98 896.74 148.45 2.67 161.68 22.95 2.06 8.19
6,583.7 m, R � 1.0 and R � 2.0

Ce is kept constant and exponent z
is solved for second-order
MOC and WCM.

Scenario 1: Pipeline length = 124.52 1.99 520.48 124.52 2.93 164.55 124.52 5.53 22.57
6,583.7 m, R � 1.0

Scenario 2: Pipeline length = 10.76 1.99 22.47 10.76 2.95 91.56 10.76 5.72 14.66
1,097.3 m, R � 1.0

Scenario 3: Pipeline length = 135.86 1.98 896.74 135.86 2.58 174.04 135.86 4.32 303.16
6,583.7 m, R � 1.0 and R � 2.0

Exponent z is kept constant 
and Ce is solved for all.

Scenario 1: Pipeline length = 125.21 2.00 520.55 51.88 2.00 71.13 9.06 2.00 3.71
6,583.7 m, R � 1.0

Scenario 2: Pipeline length = 10.82 2.00 22.51 4.63 2.00 25.32 0.77 2.00 5.49
1,097.3 m, R � 1.0

Scenario 3: Pipeline length = 138.84 2.00 901.39 77.60 2.00 1,008.03 21.57 2.00 9.05
6,583.7 m, R � 1.0 and R � 2.0

Ce—percentage of error, MOC—method of characteristics, R—nondimensional factor, SSE—sum of squared error, WCM—wave characteristic method

Boldface indicates that the variable has been solved for all three methods. Italics indicate that the variable has been kept constant for all three methods.

TABLE 2 Summary of pulse magnitude analysis
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The velocity of flow in pipe P-7 = 4.24 fps (1.29 m/s).
Using Eq 4, the potential surge Hs = 434.5 ft (132.5 m).
Steady-state results indicated that the pipe frictional losses
in the system varied from 1.4 to 10.9 ft. Frictional head
loss in pipe P-7 = 4.4 ft. From Eq 3, Hfo = 4.4 ft (1.34 m).
From Eq 5, R = 0.01.

Because R is < 0.5, one friction orifice would be suf-
ficient for reasonable solution in the case of the WCM.
However, the number of segments needed in MOC must
be determined first from the stability criteria and then
checked for adequacy of frictional modeling.

As described in the previous section, the selection of the
time increment �t has the following constraints:

• �t should be less than or equal to the smallest travel
time, i.e., �t � 0.4 s (travel time of pipe P-4);

• �t should be less than or equal to the time span of
boundary condition changes, i.e., �t � 0.6 s (demand
decreases to 0 in 0.6 s); and

• �t should be the GCD of all travel times and all
time spans of boundary condition changes, i.e., �t = GCD
of (0.4, 0.5, 0.6, 0.606, 0.7, 0.8) = 0.002 s.

The travel time of 0.606 s for pipe P-7 skews the �t
selection from a much larger possible �t value. Given the
supposition that 0.606 s can be rounded to 0.6 s, then �t
can equal 0.1 s. However, the error in doing so is that
pipes P-1 and P-7 are modeled as 1,980 ft in length rather
than 2,000 ft. Alternatively, the wave speed could be
adjusted to account for these changes.

Adjusting pipe lengths and/or wave speeds that result
in a larger �t does not appear to be a major issue for the
example network under consideration. However, it may
not always be possible to adjust the time increments to
larger values. Consider a scenario in which one pipe in the
network is significantly shorter than the rest. For exam-
ple, if pipe P-1 in the example network were 50 ft long
rather than 2,000 ft long, the resulting travel time would

Computational Effort Per Time
Number of Segments Increment—flops

First-order Second-order First-order Second-order
Scenario R MOC MOC WCM MOC MOC WCM

Scenario 1: Pipeline length =
6,583.7 m, R � 1.0

1 0.95 60 24 6 1,947 1,725 210

2 0.79 60 24 3 1,947 1,725 105

3 0.69 60 24 2 1,947 1,725 70

4 0.57 60 24 2 1,947 1,725 70

5 0.49 24 12 2 759 825 70

6 0.33 24 4 2 759 225 70

7 0.22 12 4 2 363 225 70

8 0.10 6 2 2 165 75 70

Scenario 2: Pipeline length = 
1,097.3 m, R � 1.0

1 1.06 100 20 5 3,267 1,425 175

2 0.74 100 20 4 3,267 1,425 140

3 0.65 100 20 2 3,267 1,425 70

4 0.41 100 10 2 3,267 675 70

5 0.11 10 2 2 297 75 70

6 0.06 4 2 2 99 75 70

7 0.04 4 2 2 99 75 70

8 0.02 2 2 2 33 75 70

Scenario 3: Pipeline length = 
6,583.7 m, R � 1.0 and R � 2.0

1 2.01 600 60 24 19,767 4,425 840

2 1.82 600 60 24 19,767 4,425 840

3 1.52 600 24 12 19,767 1,725 420

4 1.22 60 24 6 1,947 1,725 210

5 1.10 60 24 6 1,947 1,725 210

6 1.01 60 24 6 1,947 1,725 210

flops—floating point operations, MOC—method of characteristics, R—nondimensional factor, SSE—sum of squared error, WCM—wave characteristic method

TABLE 3 Number of segments and computational effort required for percentage error < 2%

2009 © American Water Works Association



be 0.01515 s. As the shortest travel
time, this would control the selec-
tion of �t even when all other travel
times are adjusted to meet the GCD
requirement. However, rounding
0.01515 s to a significantly higher
value might imply a large adjustment
to pipe lengths and/or wave speeds,
which could unduly affect the accu-
racy of results. Short pipes are com-
mon near pump stations when mod-
eling large distribution networks.
Because �t controls the total num-
ber of segments for the MOC and
thus the total computational effort,
it is worthwhile to explore the com-
putational efforts needed both with
shorter and adjusted �t.

Table 5 shows the procedure for
calculating computational effort for
a total simulation period of 50 s for
the first-order MOC scheme. In com-
parison, using the WCM, cases 1 and
2 require 7.876 × 106 and 0.157 ×
106 computations, respectively.

The computational effort of first-
order MOC is 272 times greater
than that of the WCM in case 1 and
4 times greater in case 2. Figure 10
shows the results of head at the junc-
tion of pipes P-1, P-2, and P-3 for
case 2 for both methods.

SUMMARY AND CONCLUSIONS
This work examined the numer-

ical accuracy and computational
efficiency issues of the WCM and
MOC in solving basic unsteady
flow equations in closed conduits.
Although both methods solve the
same governing equations and
make similar assumptions, they dif-
fer significantly in their approaches.
Numerical accuracy of solution and
computational effort (which are
interdependent) were studied for
both methods, and their implica-
tions for practical applications were
investigated.

The current study used nondi-
mensional parameters and time con-
stants reported previously in the lit-
erature. Guidelines in the form of
error study were developed for the
number of friction orifices to be used
in the WCM to ensure an acceptable
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Hazen–Williams
Pipe Length Diameter Roughness Wave Speed

Number ft (m) in. (mm) Coefficient ft/s (m/s)

P-1 2,000 (610) 36 (914) 92 3,300 (1,006.1)

P-2 3,000 (914) 30 (762) 107 3,750 (1,143.3)

P-3 2,000 (610) 24 (610) 98 4,000 (1,219.5)

P-4 1,500 (457) 18 (457) 105 3,750 (1,143.3)

P-5 1,800 (549) 18 (457) 100 3,000 (914.6)

P-6 2,200 (671) 30 (762) 93 3,140 (957.3)

P-7 2,000 (610) 36 (914) 105 3,300 (1006.1)

P-8 1,500 (457) 24 (610) 105 3,000 (914.6)

P-9 1,600 (488) 18 (457) 140 3,200 (975.6)

TABLE 4 Pipe characteristics for example application
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level of accuracy. The number of segments required for a
particular level of accuracy is governed by the twin issues
of frictional losses and system time constants. The WCM
was found to be more resilient against the value of frictional
index than were MOC schemes. Study results indicated
that compared with the WCM, first- and second-order
MOC schemes needed a substantially greater number of
segments within a pipeline for the same level of accuracy.

Computational efforts for short and long pipelines
and for a network of pipes associated with first- and
second-order MOC schemes and the WCM were
explored, and the results highlighted the computational
advantages of the WCM. Depending on the time step
chosen, the difference in computational effort could be
several orders of magnitude. Furthermore, in contrast to
the MOC, with the WCM the transient analysis time

step and the numbers of segments
that a pipeline is divided into are
not bound by the Courant num-
ber. This constitutes a key advan-
tage of the WCM because small
transient analysis time steps (often
necessitated by the presence of
short pipes in a network) can be
accommodated by the WCM
along with only the required num-
ber of segments needed for the
accuracy of solution. Conversely,
in cases needing small time steps,
the MOC would require several
segments, as required by Courant
number conditions.

Results from the case study
also suggested that with the
WCM the use of two orifices for
the entire pipeline is acceptable
for values of nondimensional
parameter R < 0.5 and the use of
six orifices is acceptable for val-
ues of R between 0.5 and 1. This
is not a very stringent require-
ment for most transient model-
ing studies, especially those deal-
ing with large water distribution
networks. This means that for
larger systems, the WCM can
substantially reduce the compu-
tational time while ensuring accu-
rate results. The ability to effi-
ciently handle large distribution
systems is essential for transient-
generated pathogen intrusion
studies. The reduction of compu-
tational time could also be use-
ful when a transient simulation
is coupled with an optimization

model in which hundreds, if not thousands, of repeated
transient simulations are required.
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Steady-state head

Case 1—��t = 0.002 s Case 2—��t = 0.1 s

Pipe Number Number Number Number
Number of Segments of Computations of Segments of Computations

P-1 303 249,150,000 6 82,500

P-2 400 32,934,000 8 118,800

P-3 250 205,425,000 5 66,000

P-4 200 164,175,000 4 49,500

P-5 300 246,675,000 6 82,500

P-6 350 287,925,000 7 99,000

P-7 303 249,150,000 6 825,00

P-8 250 205,425,000 5 66,000

P-9 250 205,425,000 5 66,000

Total number of Total number of 
computations = 2,143 × 106 computations = 0.713 × 106

MOC—method of characteristics, t—time

TABLE 5 Computational effort of the MOC
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