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Foreword  

 
It was more than 60 years ago as a Carnegie Mellon graduate student that I listened to my professor  Dr. 
Thomas E. Stelson’s  lecture on the subject of pressure waves resulting from a valve closure.  This was the 
inspiration for my doctoral thesis on pressure waves at junctions.  From that time until now, my work, and 
that of my colleague Dr. Srinivasa Lingireddy, has been researching transients, developing analytical tools 
and making those tools ever more relevant and powerful as demanded by the industries of today. 
 
The first analytical tools I developed were for NASA in the 1960s.  As I envisioned the pressure waves 
transmitted through NASA’s propellant systems, the analytical method that evolved was very natural and 
efficient, and this work on relatively simple systems provided the basis of what was later to be known as the 
Wave Plan Method.   
 
The jump from simple systems to larger networks came soon after.  I was involved in a bio-engineering 
project to determine the flow through capillaries during system shock.  I was compelled to see if I could 
apply the effects of turbulent flow to these improvements in network modeling. This prompted the 
development of a Surge analysis tool based on the Wave Plan Method.   
 
The Wave Plan Method is a simple, intuitive, and most importantly an accurate approach based on the 
principle that all pressure waves travel at sonic speeds, making it possible to predict when they will arrive 
at junctions and devices as they travel through pipes. This allows an analytical model to calculate the effects 
of the waves only at junctions and devices, with appropriate modifications for friction loss, as opposed to 
calculating their effects at multiple incremental points between junctions and devices.  The simplicity of the 
method is really what makes the Wave Plan Method indispensable to the hydraulics industry.  Large 
networks can be easily and efficiently analyzed.  The other accepted method, the Method of Characteristics, 
is inefficient at handling large networks due to its requirement for incremental calculations between 
junctions and devices. 
 
At the University of Kentucky, we made this analytical tool available to other researchers and institutions.  
Eventually it became clear that utilities and other industries had a great need for such a powerful and 
efficient tool to model transient conditions in their piping systems.  The software that became the industry 
standard and the Wave Plan Method that powers it have been in continual use and development to this day. 
 
It was at the University of Kentucky that Dr. Srinivasa Lingireddy and other esteemed professors joined me 
in the development of transient software.  Dr. Lingireddy’s pioneering work in genetic algorithms and 
component (protection device) modeling expanded greatly on the Wave Plan Method’s capabilities.  Ever 
since he joined in this endeavor, he has been a driving force behind the research and development of this 
method and the software packages that support it.  His involvement over many years with industry outside 
academia, with engineers, operators, regulators, and even with manufacturing, has honed his knowledge 
and skills to the point where, in my opinion, there is no one in the world who equals his knowledge and 
expertise.   
 
This book brings together decades of experience in modeling, engineering and software development.  My 
own work, and the work of many others,  is represented in these pages.  But most of the work has been Dr. 
Lingireddy’s.  He has truly taken the helm of a life’s work that began with a youthful intrigue.  Dr. Lingireddy 
has helped me to make this method one that is utilized by thousands of engineers and operators in a 
multitude of countries around the world. He is truly the best choice for an author on this subject, and I am 
grateful that he has chosen to share his knowledge with industries and the world in this excellent book. 

 
Don J. Wood 
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Preface 
 
Let me begin this preface by thanking the University of Kentucky, the place I had called home for 16 years, 
for granting me a sabbatical in 2005. The extensive world travel during the sabbatical year made me realize 
how little I knew about the real-world water hammer challenges, without exaggeration! This was despite 
my more than a decade of academic experience on unsteady flows, several years of close interactions with 
many surge modelers, and a complete grasp on the source code of the most widely used surge analysis 
software.  
 
The sabbatical allowed me to meet with some of the finest practicing engineers, utility managers, and 
research and development specialists from Europe, Israel, United Arab Emirates, Oman, China, and India. I 
was also confronted with many unanswered questions. The existing books were not of much help as most 
of them focused on the complexities of the computational techniques and not on the real-world challenges. 
None had answers to questions such as: Would there be limits on opening and closing times for relief valves? 
Why placing a check valve in the middle of a long pipeline as a surge protection device is a bad idea, while 
theoretically it appears like a great idea? Can there be a delay in the activation of an air valve on down surge? 
etc. I was well-aware of the significant amounts of water loss through leakage even in the highly regulated 
distribution networks of the United States, but did not quite understand why such widespread leakages 
would develop in the first place? Why do we invest in efforts such as pressure management in controlling 
water loss through leakage instead of addressing the root causes of the leakage, i.e., broken pipe joints and 
cracked pipes? What causes the pipe joints to fail in these highly regulated water distribution networks that 
are required to maintain a minimum positive pressure of 20 psi (14m) under all demand conditions? Why 
are hundreds of “boil water” advisories issued every year even in technologically advanced countries like 
the US and Canada? 
 
The sabbatical has inspired me to take the plunge and seek answers to the real-world water hammer 
problems. It prompted me to take up the challenge of solving at least one real-world problem involving a 
heavily battered water supply system. Countless number of hours spent with research and development 
specialists of the surge protection equipment helped me understand the intricate details of the diverse set 
of equipment and their relation to surge modeling. Close interaction with pump and check valve 
manufacturers, and pump station operators helped me appreciate the complex inter-relationships between 
various equipment within the pump station. On one occasion, I learned how a pump station check valve that 
has been operating trouble-free since its installation started generating severe slam pressures after a benign 
act of installing a large, compressed air tank at a location downstream of the check valve. The compressor 
air tank was required to protect the main pipeline from periodic burst events. Participation in several 
forensic studies allowed me to understand what matters the most in controlling pressure surges arising 
from the pump station equipment. Forensic investigations also allowed me to appreciate how certain 
seemingly irrelevant devices can cause destructive surge pressures at some faraway places within the 
pipeline systems. For example, in a well-conceived and well-constructed pipeline project comprising 
roughly 60 km of 2000 mm diameter pipeline and several one-way surge tanks, the periodic burst events 
close to the pump station were traced to an air valve roughly 40 km away from the pump station. Sadly, 
serious forensic investigations were initiated only after the fourth burst event that resulted in the death of 
a cyclist. The air valve in question was not part of the surge protection system and was intended only for 
routine filling and draining operations! 
 
The strength of materials was not one of my strong areas and I had to relearn the subject after realizing  that 
understanding the pressure rating of pipelines is fundamental to surge modeling. On the other hand, 
optimization was one of my strong areas and a thorough knowledge on pressure ratings helped me redesign 
certain pipeline projects, bringing substantial savings to either surge protection cost, pipeline cost, or both. 
Understanding the strength of materials is also important as pipes of different material react differently to 
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surge pressures. For example, an intense positive pressure wave traversing a welded mild steel pipeline of 
certain rated pressure would burst the pipeline at the weakest point leaving rest of the pipeline practically 
intact. However, the same pressure wave traversing a glass reinforced plastic (GRP) pipeline of identical 
pressure rating can inflict hairline cracks at multiple locations, in addition to bursting the pipeline at its 
weakest point. This is despite the fact that GRP pipe is considered as one of the great modern inventions. 
The hairline cracks become trouble spots and future burst locations even when not so intense pressure 
waves traverse the pipeline later. In certain parts of the world, pipe burst events are considered acceptable 
when they occur during the commissioning stage of the project. Such a viewpoint might lead to perpetual 
leakages and burst events when GRP pipelines or pipelines with similar characteristics (for example, 
asbestos cement, reinforced concrete, and prestressed concrete) are used in the project.  
 
In the developed countries, the loss of water through leakage is dominant only in the distribution networks. 
However, the loss of water through leakage is ubiquitous even in bulk water pipeline systems of the 
developing world. Frequent power outages coupled with inadequate surge protection or improper use of 
check valves (sometimes called zero velocity valves) as surge protection devices appear to have resulted in 
numerous distributed leakages in many bulk water supply pipelines. The efficiency of some of the highly 
battered bulk water pipeline systems is below 50%. Improper air management on these bulk water systems 
resulted in significant increase in power consumption which goes unnoticed due to lack of energy audits. A 
thorough understanding of the causes of widespread leakages on the bulk water pipelines should provide 
answers to persistent leakage problems in the distribution networks.  
 
Roughly a decade after diving into the real-world in 2007, my team and I have successfully rehabilitated a 
bulk water supply pipeline that was experiencing at least one pipe burst event each week (see Section 5.1.2 
of this book) and proved that even highly battered pipeline systems can be brought back to life with suitable 
surge protection. In the last 15 years, I designed surge protection for more than hundred bulk water 
pipelines and scores of irrigation pipe distribution networks comprising several hundred kilometers of 
large diameter (>2000 mm) pipeline. A total of about 200 bladder surge tanks, scores of relief valves, and 
hundreds of non-slam air valves were used in protecting these pipeline systems. I worked with 20 mm 
diameter pipelines carrying cryogenic liquid as well as 5000 mm diameter bulk water cross-country 
pipelines. While most pipelines carried water at normal velocity limits of 2.5 m/s or less, I have also dealt 
with pipelines discharging water at an abnormally high 8 m/s velocity.  
 
My world travel did not stop during this period. I used seminars and training courses as opportunities for 
two-way learning. Some of the most intriguing questions were from engineers of Inner Mongolia and 
Uganda during my lectures. This book is an effort at sharing the collective knowledge on the practical and 
intricate details pertaining to surge modeling. Based on the recent literature, the focus of the academic 
world continues to be on the surge analysis problems that are disconnected from the real-world challenges 
as illustrated in several sections of this book. This book is also an attempt at bridging that gap and motivating 
future researchers to find solutions to the persistent real-world challenges related to water hammer.  
 

Srini Lingireddy 
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Introduction 

 

Design of effective surge protection involves building an accurate model of the pipeline system, use of a 

reliable solution technique, and a modeler who understands all the intricacies of surge analysis. Advances 

in computing technology and human interface tools have reduced and streamlined model building efforts 

substantially. Powerful, accurate and numerically stable solution techniques such as the wave plan 

method (WPM) with decades of excellent track record eliminate the search for reliable modeling tools. 

There are many modelers who are well-versed in surge analysis through decades of experience. However, 

for those with little or no experience, the authors have not come across a book that details all the 

intricacies of surge modeling. Accordingly, the objective of this book is to explore these intricacies in 

detail, using the lessons learned through decades of surge protection design experience, including close 

interaction with pump station operators and field personnel, utility managers, fire protection specialists, 

research and development specialists of surge protection equipment,  surge modeling consultants, and 

academics. The material is presented in seven chapters and several  appendices. The chapters describe 

broader concepts in a logical way starting with the description of surge analysis tools, followed by causes 

and effects of surge events, methods of protecting the pipeline systems from extreme surge pressures, 

and assumptions and uncertainties encountered during surge analysis. The appendices provide 

corroborative material for several of the broader concepts described in various chapters and include 

many of the intricate details pertaining to the surge analysis. By bringing to light all the intricate details 

including the limitations of surge modeling and ways to overcome those limitations, the book is expected 

to instill greater confidence in undertaking surge analysis works. A summary of each chapter and 

appendix is provided in the following.   

Chapter 1 describes the basic elements of surge analysis by introducing WPM, a powerful solution 

technique based on intuitive wave propagation mechanics. The mechanics of wave propagation are first 

illustrated using a simple reservoir-pipe-valve system which ignores friction losses; this example 

demonstrates the use of Joukowsky’s equation, which is the foundation upon which all surge analysis 

techniques are built. Simple mathematical equations governing the reflection and transmission of 

pressure waves at junction nodes are introduced next. Discovery of these equations in the late 1950s 

formed the basis of the powerful WPM. The analysis of friction losses using friction elements is then 

discussed. WPM has proven to be the most powerful method and it derives that power from the use of 

friction elements that allow for the much sought-after nonlinear spatial computational grid. The concept 

of friction elements was then extended to describe the modeling of various components of pipeline 

systems. Appendix A is a companion section to Chapter 1 and provides an in-depth analysis on the role of 

friction in the discretization of the solution space.  

Large and complex surge analysis problems need extraordinarily powerful solution techniques. Design of 

surge protection systems is an iterative process and may require numerous productive analytical runs, 

possibly several dozens to a few hundred, before arriving at an effective and efficient protection system. 

A computational tool that takes 8 hours to complete one surge analysis run, for example, would 

unnecessarily delay the design process, likely forcing practitioners to either miss real-world project 

deadlines or to limit their analytical runs, which could compromise the effectiveness or the efficiency of 

the surge protection system, or both. On the other hand, a computational tool that is even an order of 

magnitude faster would help to arrive at an effective and optimal design in a reasonable timeframe. WPM 

is that tool, and its computational efficiency scales with the size and complexity of the system under 

consideration. It is easy to appreciate the advantages of a powerful solution technique that may be up to 

several orders of magnitude faster than existing alternatives without compromising the accuracy of the 
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results. Chapter 2 describes the power of WPM when addressing large and complex surge analysis 

problems. The chapter describes the real-life challenges faced by water utilities, such as how to minimize 

the large number of water main breaks (currently around 180,000 per year in US and Canadian water 

distribution networks!), and ways to eliminate potential pathogen intrusion problems and the associated 

“boil water” advisories. Appendix B is a companion section to Chapter 2, providing an in-depth analysis 

of WPM and the competing Method of Characteristics (MOC), establishing the unequivocal superiority of 

WPM over MOC.  

The objective of most surge analysis studies is to design an effective and optimal surge protection system. 

Some studies might be geared towards forensic investigation of pipeline or component failures. 

Regardless of the reason for surge analysis, a thorough understanding of the causes of pressure surges in 

pipeline systems is indispensable. Chapter 3 illustrates a variety of scenarios that can generate pressure 

surges in pipeline systems. It is also important that modelers understand the most fundamental cause-

and-effect relationship governing the occurrence of extreme surge pressures, which can be summarized 

by the statement, “rapid changes in velocities lead to rapid changes in pressures.” Modelers must 

therefore consider all possible scenarios that could generate a rapid change in velocity, instead of relying 

on a compiled list of example scenarios. Accordingly, the material presented in this chapter directs the 

readers to visualize how each of the scenarios presented generates rapid changes in velocities, an 

understanding which is generalizable when identifying causes of transients that are not explicitly listed 

in this chapter. The companion sections of this Chapter 3 are Appendix C: Attenuation of Pressure, 

Appendix D: Wave Speed, Appendix G: Pumps and Turbines, and Appendix H: Check Valves.  

When surge pressures exceed the pressure ratings of pipelines or other devices within a pipeline system, 

they can produce acute or chronic damage, or both. Chapter 4 illustrates the types of damage extreme 

surge pressures cause in pipeline systems by describing real-world incidents. The chapter also provides 

a brief introduction to determining the pressure-withstanding capacities of pipelines constructed of 

different materials.  

Chapter 5 illustrates various methods of protecting pipeline systems from extreme surge pressures. This 

includes summarizing the types of currently available surge protection devices, details of their working 

principles, and their relative advantages and disadvantages. Air valves as surge protection devices are 

described in Chapter 6. Chapter 5 shows how understanding and relying on the principle that “rapid 

changes in velocities result in rapid changes in pressures” assists with the selection of appropriate surge 

protection methods and devices. Inappropriately selected or sized surge protection devices can introduce 

secondary surge pressures that could be more severe than the primary surge pressures they are designed 

to mitigate. More information is contained within this chapter’s companion section, Appendix E: Air-water 

interface.  

There has been significant progress in the last two decades in the design of air valves used in pipeline 

systems. While air valves are indispensable to most pipeline systems for filling and draining operations 

(including removal of residual air), these valves are often not designed or sized as surge protection 

devices. However, certain specially designed air valves, called non-slam air valves, have been used 

successfully to protect pipeline systems from extreme negative pressures while minimizing the slam 

pressures associated with rejoining water columns during air venting cycle. The cost of surge protection 

can be drastically reduced when air valves are incorporated as part of the surge protection design, where 

appropriate. When air valves are used as part of surge protection, they introduce air into the pipeline 

during unsteady state, and the presence of air violates the fundamental closed-conduit flow assumption 

that underpins both WPM and MOC. Therefore, it is important to understand the assumptions associated 

with air valve modeling so informed decisions can be made on the suitability of air valves as part of surge 
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protection system. Chapter 6 describes the different types of air valves, including those used for surge 

protection, and how they are modeled by a popular WPM-based surge analysis tool. More information is 

available in this chapter’s companion sections, Appendix E: Air-Water Interface and Appendix F: Air 

Valves and Common Misconceptions. Chapter 7: Assumptions and Uncertainties, contains a detailed 

review of a real-world scenario in which non-slam air valves are shown to be an essential component of 

an effective and efficient surge protection design by examining the increased cost and practical limitations 

of alternative designs. 

All non-trivial modeling tasks must account for certain assumptions and uncertainties, and surge analysis 

is no exception. A few modelers are aware of all the assumptions and uncertainties, capable of interpreting 

the model results accordingly, and thus can build sufficient factors of safety into their surge protection 

designs. Chapter 7 summarizes the assumptions associated with the available modeling techniques 

(WPM and MOC) and describes the assumptions made when modeling various components of the pipeline 

system. This chapter also describes the various sources of uncertainty involved when characterizing 

pipeline components, including the lack of manufacturer-provided specifications and the resultant use of 

generalized as opposed to component-specific data sets.  Though the long list of assumptions and 

uncertainties might be somewhat discouraging to novice modelers, the authors are of the opinion that 

empowering modelers with the complete set of facts is the best teaching method, since these assumptions 

and uncertainties, if not properly accounted for, can invalidate the resultant surge protection design, 

regardless of which tool is used for modeling.  Chapter 7 also describes the importance of sensitivity 

analysis to gain further confidence in model results and recommends adding factors of safety to the surge 

protection design where the uncertainties cannot otherwise be accounted for. The need for a powerful 

solution technique is self-evident when several dozens of productive model runs (driven by the need for 

extensive sensitivity analysis) are required to quantify the potential impact of these uncertainties on 

system surge pressures and thus arrive at an effective and optimal surge protection design.  

When pressure waves are generated by any transient-initiating event, they travel through all 

hydraulically connected regions of the pipeline at sonic speeds. The wave mechanics described in Chapter 

1 helps to visualize wave propagation as the waves traverse the entire pipeline system, being partially 

reflected and partially transmitted at junction nodes, components and other boundary conditions. These 

fast-moving pressure waves are also attenuated by the pipeline’s frictional resistance.  Whereas MOC-

based numerical methods require division of long pipelines into uniform grids satisfying certain criteria, 

WPM can employ a nonuniform spatial grid to accurately account for the friction loss while maintaining 

the numerical stability. Appendix A describes the role of friction in the discretization of the solution space 

which is quantified through extensive numerical experiments. These experiments establish the ability of 

WPM to accurately assess the effects of friction in long pipelines, validating the use of the nonuniform 

spatial grid. These numerical experiments also illustrate the limits on the maximum grid spacing when 

selecting the non-uniform spatial grid.  

Appendix B describes the basics of MOC and further elaborates on the information provided in Appendix 

A to establish the superiority of WPM over MOC. Specifically, the performance of first- and second order 

MOC are compared with the performance of WPM when addressing friction in longer pipe sections. 

Extensive numerical experiments originally presented in a doctoral thesis are provided to demonstrate 

the superiority of WPM over MOC.  

There has been a considerable attention in recent literature to a phenomenon currently being referred to 

as “unsteady friction,” which has been proposed to account for the faster-than-expected attenuation of 

pressure waves in certain laboratory-scale pipeline experiments. Unfortunately, no one has yet presented 

a reliable unsteady friction model that can be generalized to pipelines of different characteristics, even at 
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the experimental scale. Appendix C explores multiple possible reasons for the attenuation of pressure 

waves, allowing readers to make informed decisions regarding the necessity of accounting for unsteady 

friction when working with more complex, real-world pipeline systems.  

A pressure wave generated in a pipeline system travels at sonic speed (called wave speed or celerity), the 

exact value of which depends on the characteristics of the transported fluid and the pipe structure 

bounding the fluid. Wave speed plays a dominant role in unsteady flow calculations. Appendix D 

describes the various factors influencing wave speeds in pipeline systems. Uncertainties surrounding the 

estimation of wave speeds for old, buried pipelines are discussed. This appendix also demonstrates the 

often-counter-intuitive effects of abrupt changes in wave speeds within pipelines of non-uniform 

diameters and/or materials (for example, a short, high-density polyethylene pipe with a low wave speed 

placed in the middle of a long, mild steel pipe with a higher wave speed).  

Appendix E describes the air-water interface as it relates to surge analysis of pipeline systems. While 

there may be some pipeline systems that are completely free of air intrusion, the majority of pipelines 

must deal with the effects of air intrusion in some form. Air can be present in both the dissolved state and 

the suspended state. While the presence of large amounts of suspended (bulk) air violates the 

fundamental closed-conduit flow assumption underpinning both WPM and MOC, the presence of small 

quantities of suspended air can affect liquid density, bulk modulus, etc. Changes in the liquid density and 

bulk modulus affect wave speed and, in turn, the unsteady flow results. This appendix begins by describing 

the solubility of air in water, which affects the disappearance and reappearance of air bubbles and air 

pockets that can occur at different locations within the pipeline throughout unsteady state. Several other 

related topics such as vapor pressure, suspended vs. dissolved air, factors influencing the transport of air 

in pipelines, the polytropic process, corrosion, etc., are discussed as well. This appendix also describes 

several important factors that can generate either adverse or favorable effects arising from the presence 

of an air-water interface in isolated portions (such as dead ends) of pipeline systems.  

Appendix F illustrates common misconceptions associated with air valves in pipeline systems. Many of 

these misconceptions result from the lack of unified standards on the design and use of air valves, and 

more importantly, the use of air valves for surge protection.  

Appendix G describes the inertial characteristics of pumps and turbines. It describes the origins of  

“industry standard” nondimensional pump characteristics in the well-known Suter curves format, 

beginning with the collection of experimental data at Caltech in the early 1930s. The appendix discusses 

the transformation of this data, first presented in Karman-Knapp circle diagrams, through Donsky’s 

compilation of the same data into a format suitable for use with computational tools. The appendix also 

illustrates the operating ranges of both pumps and turbines within Suter curve diagrams. The 

dependability of the “industry standard” nondimensional characteristics generated using three 

laboratory-scale pumps of nearly century old designs for today’s pumps of diverse capacities is discussed.  

Appendix H describes the operation of various types of check valves used in pipeline systems. It 

illustrates the complexity of check valve operation, and explains the difficulties associated with obtaining 

deterministic, time-dependent check valve closing characteristics. The appendix also demonstrates the 

workable solution of employing manufacturer-provided dynamic characteristic curves relating potential 

reverse velocity just before the final closing of the check valve to the flow deceleration at the check valve’s 

location, which can be used to validate check valve modeling assumptions. 

 

  



 

  



 

 
 
 
 
 
 
 
 
 
 
 
Conversion Factors: 
 
 

1 ft = 0.3048m, 1m = 3.2808 ft = 39.37 in 
1 mile = 1.609 km, 1 km = 0.6214 miles 
1 lbm = 0.4536 kg, 1 kg = 2.2046 lbm = 0.06852 slug 
1 oz = 28.3495 g, 1 g = 0.03527 oz 
1 lbf = 4.448 N, 1 N = 0.2248 lbf 
1 psi = 6.895 kPa = 0.06895 bar, 1 bar = 14.5038 psi  
1 ft3/s = 0.0283 m3/s, 1000 l/s, 1 m3/s = 35.3147 ft3/s = 15852 gpm 
Temperature: TC (°C) = (TF (°F) – 32) * (5/9), TF (°F) = (TC (°C) * (9/5)) + 32 
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